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FUNCTION MACHINES & FLEXIBLE ALGEBRAIC THOUGHT1
We explore how college students understand ideas of functions, and which representa-
tions are productive for them in promoting their ability to work flexibly across repre-
sentations. We use pre- and post-test scores, and triangulations via student self
evaluations, to generate a hypothesis related to flexible thinking and success in alge-
bra. We use confidence intervals to provide evidence for a highly significant change in
student flexibility in algebraic thinking, and to assist in generating a plausible model
of how the use of function machines in a developmental algebra course is instrumental
in stimulating that flexibility.

INTRODUCTION

Students who enroll in developmental algebra in universities and two-year colleges commonly

see mathematics as consisting solely of procedures and formulas. Unfortunately, this vision of

mathematics does not generally assist them in carrying out the procedures accurately, efficiently

or appropriately, or in getting the formulas right in context. The unifying idea of a function is gen-

erally not something with which developmental algebra students are familiar or comfortable. Fur-

ther their mathematical thinking, focused principally on procedures and "correct" formulas, is

largely inflexible and highly context specific. We relate the ideas of (i) functions as a unifying

concept in algebra and (ii) flexibility of algebraic thought through the use of function machines as

a generic representation of functions with power to assist students in becoming more flexible and

competent in their algebraic thinking.

Functions and function machines

Students often rely on intuitive and unreflective ideas of functional relationships. The subtlety

of the function concept with its process-object duality and various representations proves to be

highly complex. It is a concept, with wide-ranging powers and with widespread misunderstand-

ings, that has been studied extensively in recent years (see, for example, Markovits, Eylon &

Bruckheimer, 1986; Vinner & Dreyfus, 1989; Leinhardt, Zaslaysky, & Stein, 1990; Harel &

Dubinsky, 1992; Cooney & Wilson, 1993; Even, 1993; Cuoco, 1994; Thompson, 1994; Wilson &

Krapfl, 1994; DeMarois & Tall, 1999; Lloyd & Wilson, 1998). Both teachers' and students' con-

ceptions of functions are of enduring interest in mathematics education, because of the fundamen-

tal organizing and analytic role in mathematics played by modern reflective notions of functions.

Various representations of function (table, graph, algebraic, for example) may be seen as ways of

representing calculation of an input-output relationship. Functions viewed as input-output
machines were studied in mathematics education as far back as 1965 by Peter Braunfeld. Tall,

McGowen & DeMarois (2000) proposed the function machine box as a generic image that can act
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as a cognitive root, embodying the salient features of the idea of function, including process

(input-output) and object, with various representations seen as methods of controlling input-out-

put. The function machine embodies both an object-like status and the process aspect from input

to output. Recent studies (Mc Gowen, DeMarois & Tall, 2000; Mc Gowen & Tall, 1999) indicate

that the introduction of the function machine as an input-output box enables students to have a

mental image of a box that can be used to describe and name various processes. This can take

place often without the necessity of having an explicit process defined. Other forms of representa-

tion may be seen as mechanisms that allow an assignment to be madeby a table, by reading a

graph, by using a formula, or by some other assignment procedure.

Flexibility

Krutetskii characterized flexible thinking as reversibility: the establishment of two-way rela-

tionships indicated by an ability to "make the transition from a 'direct' association to its corre-

sponding 'reverse' association" (Krutetskii, 1969, p. 50). Gray and Tall (1994) characterize

flexible thinking in terms of an ability to move between interpreting notation as a process to do

something (procedural) and as an object to think with and about (conceptual), depending upon the

context. In this article, flexibility of thought encompasses both Krutetskii's and Gray & Tall's

ideas as facets of a broader notion of flexibility. In addition to reversible associations, and procep-

tual thinking, we are interested in connections between various representations of functions,

including tables, graphs and algebraic syntax, which we refer to as conceptual. The proceptual

divide (Gray & Tall, 1994) is, in a broader sense, part of a conceptual divide in which flexibility is

compounded by student difficulties in using and translating among various representational forms

(Mc Gowen, 1998).

The theoretical background on flexibility suggested we pair questions so that a student scoring

correct on both of a pair was evidence of flexible thinking for that student. For example, for a sim-

ple function f we might ask: (a) what is f(5)? and also ask (b) for what value or values of x is

f(x) = 0? Essentially this is the difference between evaluating a function and solving for a value.

Twelve of a total of thirty-one questions were organized in pairs-6 pairs in all. Question pairs

addressed differing representations of functions: syntactic formulas, tables, graphs, and function

machines. Success in both questions of a given pair was regarded as an indication of flexibility of

algebraic thinking with respect to the representation for that question pair. Question pair 8 & 9

(Q8. Given f(x) = x2 5x + 3, find fl-3); Q9. Given f(x) = x2 5x + 3, find fit 2)) relates to flexi-

bility in that a student who can answer both questions correctly can substitute a number for a vari-

able in an algebraic expression and can also generalize the substitution from numbers to the

situation of another algebraic expression in a different variable. Question pairs 10 & 11, 12 & 13,

14 & 15, and 16 & 17 are all concerned with evaluation versus solving. Success on both questions
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for any one of these question pairs indicates flexible algebraic thinking in the sense of Krutetskii.

Details of question pairs 14 & 15 and 16 & 17 are given below in the results.

METHOD

Data were collected from a cohort of students taking a common 16 week course in develop-

mental algebra at a two-year college. Data were of two sorts: pre-test and post-test scores (weeks

1 and 16 respectively; identical questions), and student written self-evaluations, turned in by week

16. Of the 135 students initially enrolled in the course, 87 students completed the course and were

taught in 6 sections by 4 different instructors. The text for the course (DeMarois et al, 2001)

emphasizes the use of function machines, as well as syntactic algebraic formulas, tables, graphs

and finite differences. However, function machines are not mentioned explicitly after chapter 3.

Instructions given to students for their self-evaluations included: "What mathematics have you

learned during this time? Write a summary of what you have learned." Students were asked to cite

specific examples.of mathematical growth, and to place their mathematical understanding, knowl-

edge and skills competencies, in the context of Clarke, Helme & Kessel's (1996) criteria for
meaningful learning in mathematics. They were not explicitly or specifically asked to address

function machine or other representations for functions.

RESULTS AND ANALYSIS

Students' pre- and post-test responses were significantly different. We present results for the

set of linked pairs of questions: 6 pairs, comprising 12 questions of the complete set of 31. The

inter-item reliability (Cronbach's alpha) of the linked pairs of questions on the pre-test was 0.43

and on the post-test 0.88 (identical questions on the pre- and post-test). Since the questions did not

change from pre-test to post-test, we conclude that this cohort of students saw the questions as

having greater internal consistency at the end of the course than at the beginning. The correlation

between pre-test and post-test scores for the linked pairs of questions was small and statistically

significant (r2 = 0.04, p < 0.05). This indicates no linear relationship between pre-test and post-

test scores on the paired questions: students did not increase uniformly and proportionately from

pre-test to post-test.

A confidence interval analysis for the paired two-sample difference in proportions, between

the pre- and post-tests, of students who correctly answered both of a linked pair of questions

yielded the results shown in table 1, below. Note that for the first linked pair (Questions 8 & 9)

one section comprising 12 students was not available for analysis, so the data there comes from

75, rather than 87, students. The differences in proportions are all significant at the 99% level: no

99% confidence interval for the difference in means contains 0. In the context of the other ques-

tion pairs, the least significant difference in proportions correct on both of a linked question pair is

that for Questions 14 & 15:
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Questions 14 & 15: A function table copied from a TI-82 graphics calculator is shown:

Question 14: What are the output(s) if the input is -2?
Question 15: What are the input(s) if the output is -3?

The most significant difference in proportions correct on both of a linked question pair is that for

the linked pair of questions 16 and 17 (symbolic representation), which are as follows:

Questions 16 & 17: Consider the equation y = 3x 7.

Question 16. What are the output(s) if the input is 5?
Question 17. What are the input(s) if the output is 0?

Question pair (representation) 95% Confidence I 99% Confidence I

8 & 9 (quadratic: number; algebraic input) [0.26, 0.49] [0.22, 0.52]

10 & 11 (function machine) [0.21, 0.48] [0.16, 0.52]

12 & 13 (piece wise linear graph) [0.20, 0.44] [0.16, 0.47]

14 & 15 (table: two inputs for output) [0.05, 0.27] [0.01, 0.31]

16 & 17 (symbolic: linear) [0.57, 0.77] [0.52, 0.71]

18 & 19 (graph: quadratic) [0.09, 0.25] [0.06, 0.29]

Table 1: 95% & 99% confidence intervals for differences in proportions pre- to post-test of
students getting both question pairs correct. Note that none of the confidence intervals

contains the value 0 and that the confidence intervals show effect size.

The confidence intervals, at varying confidence levels and the relative effect sizes can be seen

in a visually striking way via confidence bands. These consist of a plot of the confidence interval,

for the difference in proportions, versus the specified confidence level. In Figure 1, below, we

illustrate these confidence bands, for confidence levels between 0.95 and 0.99, for the Question

pairs 14 & 15 (table representation) and 16 & 17(symbolic representation).
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FIGURE 1: Confidence bands: confidence intervals for a difference in proportions, pre-test
to post-test (vertical axes) versus confidence level (horizontal axes). The straight horizontal

lines show the difference in proportions for the sample of 87 students
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Student written self-evaluations

Student written self-evaluations indicated that many feel a function machine model assists

them to make sense of notation, to organize their thinking, and to produce equations to describe

data. References to input and output occurred in the work and interviews throughout the semester

of students who were successful. They used the function machine notion to organize their think-

ing as they worked problems and interpreted notation. In contrast to the more successful students,

the least successful students made very few references to function machines in their work or in the

vocabulary they used. The least successful students demonstrated little or no improvement in their

ability to think flexibly. Students were deemed "least successful" by a combination of post-test,

final examination, and final portfolio gradesall of which form the components of a student's

final grade for the course. Usually the top 15% and the bottom 15% of the class, after final course

grades are determined, are examined to identify the most and least successful students, given the

15% criteria. Given class sizes, this is generally the top 3 to 4 and bottom 3 to 4 students in any

given class.

Excerpts from self-evaluations for some of the more successful students are provided below.

Student A: I know that function machines are good models for mathematical rela-
tionships when one wants to clearly identify and separate the input, output and pro-
cess. I also can look at function notation, f(x), and understand what it is stating: That
f is a function of x. I see the input (x), the output f(x), and the process, when in a rela-
tionship form like f(x) = 3x + 10.... I know now that 'solving' can refer to many dif-
ferent things including: 1) solving for an unknown variable; 2) solving a system of
equations (where the given functions share the same input and output values); and 3)
solving an equation (finding the input value(s) that produce an output of 0).

Student B: Function machines are a great way to visualize the process of inputting,
finding # processing, and finding the output.... Before I never knew there was a dif-
ference between evaluating, simplifying, and solving an equation. We EVALUATE
the function to find the output of a function when the input is given. After we evalu-
ate, we simplify using various mathematical properties such as associative, distribu-
tive, and identify. We use order of operations to obtain the output or the answer. We
SOLVE to find the input, given the output.... Numerically, a linear relationship is the
change between two outputs divided by the change between corresponding inputs
that always produce a constant slope.

Student C: I now have the skills to interpret and use mathematical notations appro-
priately, reflected in my work and ability to interpret a function machine; convert
from one type of mathematical notation to another, convert a function machine to an
equation/equation to function machine.... I have identified inputs and outputs, which
was the key to answering the questions, appropriately and accurately in my tests on
questions involving: recognizing the given slope to make a table, showing input/out-
put; identification of a given notation and breaking it down by input/output; naming
input/ output from a given function machine or equation; finding output if given
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input/finding input if given output.... I am knowledgeable in understanding the dif-
ference between evaluating and solving: solving for X; evaluating for Y... I have
learned more about equations and functions during the past 4 months than I have
ever learned in my lifetime.

Student D: I had no idea what function is and what a relation is, but now I do. Rela-
tion is mathematical notation with at least two variables. Independent is input.
Dependent is output. I know that a relation, which has only one output for each given
input is a function. If I see f(8) = x + 7, I know I am given an input. f(x) = 8 gives me
output. I can work with ordered pairs. In case (8, 45), I see 8 as input and 45 as out-
put.

CONCLUSION

The major lesson to be learned from our analysis of the data collected on the pre- and post-

tests and student self-evaluations is that some factor (or factors) across 6 classes, with 87 students

and 4 instructors, is associated with a dramatic change in, flexibility of algebraic thinking at the

whole class level. An emphasis on functions as machines is the novel element that is likely to

assist students to form mental images to assist them in the interpretation and use of syntactic alge-

bra. How far and wide, and how strong across ability ranges, this effect might be we do not yet

know. The evidence we have presented suggests that the representation of functions as function

machines assists students' understanding of or development in algebra, and provides them with

models that will require no significant re-shaping and modification in further mathematical stud-

ies.

The average increase in syntactic skills over the 16 week course was very significant. The

linked question pair showing the highest gain consisted of syntactic algebra questions 16 & 17,

asking about input and output for the function _fix) = 3x 7. The mean gain, across the cohort of

87 students, for the average number of correct answers to both these questions, from pre-test to

post-test, was a very high 0.82 (ref. Hake, 1998). This is very strong evidence that students were

flexible, in the sense of Krutetskii, in interpreting this type of syntactic algebra question by the

end of the course, compared with a general inflexibility at the beginning.

A function machine representation was used throughout the text (DeMarois et al, 2001) and

the course as a means of helping students make sense of notation and to understand processes of

"solving an equation" versus "evaluating a function". The pre-post tests show a statistically highly

significant increase in students' ability to use algebraic notation. This, taken together with student

self-evaluations, suggests strongly, but does not prove, that a function machine representation pro-

vides students with a way of organizing their thinking and with a more process-oriented view of

mathematics.

This approach may not be appropriate for all students at all levels. However, for students who

have had algebra previously and place into a developmental algebra courses, starting with a pro-
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cess notion of function and a function machine representation seems to help them make sense of

notation. Such students believe they need to be able to manipulate symbols successfully and, as a

consequence of this belief, focus on being able to "do algebra": that is, manipulate syntactic
expressions. A function machine representation provides them with a potential means to organize

their thinking so they can be more successful in dealing with notation than in their past experi-

ences with algebra.

Student work and writings are replete with references to "input" and "output" in their concept

maps, their explanations, and in their self-evaluationsindications that introduction and use of

function machines impacted their thinking and provided an organizing tool or principle through-

out the semester.

We hypothesize that use of a function machine representation of functions correlates with a

student's ability to work flexibly across syntactic, graphical, and tabular representations. More

specifically, we hypothesize that:

(1) a student's ability to form mental images of functions as machines;

(2) use of a graphing calculator as a concrete manifestation of a function machine; and

(3) use of finite differences and finite ratios to make sense of parameters and to help
students have some understanding of where equations come from, given data;

are jointly highly and significantly correlated with their ability to utilize syntactic algebraic repre-

sentations of functions and, to some extent, correlated with an ability to utilize graphical and tab-

ular representations of functions. The pre- and post-test data we have presented, together with

student self-evaluations, provides a strong foundation for this hypothesis. The class of students we

studied dramatically increased syntactic algebraic skills over a period of 16 weeks. Many of the

students stated explicitly this was due to understanding functions as processes, through a repre-

sentation as function machines, particularly the ability to form images of function machines, and

through the use of finite differences in conjunction with function machine representations.
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